mirror of
https://github.com/arsenetar/dupeguru.git
synced 2024-11-05 07:49:02 +00:00
a17ab6136c
--HG-- extra : convert_revision : svn%3Ac306627e-7827-47d3-bdf0-9a457c9553a1/trunk%403
136 lines
5.2 KiB
Python
136 lines
5.2 KiB
Python
#!/usr/bin/env python
|
|
"""
|
|
Unit Name: hs.picture._match
|
|
Created By: Virgil Dupras
|
|
Created On: 2007/02/25
|
|
Last modified by:$Author: virgil $
|
|
Last modified on:$Date: 2009-05-28 16:02:48 +0200 (Thu, 28 May 2009) $
|
|
$Revision: 4388 $
|
|
Copyright 2007 Hardcoded Software (http://www.hardcoded.net)
|
|
"""
|
|
import logging
|
|
import multiprocessing
|
|
from Queue import Empty
|
|
from collections import defaultdict
|
|
|
|
from hsutil import job
|
|
from hsutil.misc import dedupe
|
|
|
|
from dupeguru.engine import Match
|
|
from block import avgdiff, DifferentBlockCountError, NoBlocksError
|
|
from cache import Cache
|
|
|
|
MIN_ITERATIONS = 3
|
|
|
|
def get_match(first,second,percentage):
|
|
if percentage < 0:
|
|
percentage = 0
|
|
return Match(first,second,percentage)
|
|
|
|
class MatchFactory(object):
|
|
cached_blocks = None
|
|
block_count_per_side = 15
|
|
threshold = 75
|
|
match_scaled = False
|
|
|
|
def _do_getmatches(self, files, j):
|
|
raise NotImplementedError()
|
|
|
|
def getmatches(self, files, j=job.nulljob):
|
|
# The MemoryError handlers in there use logging without first caring about whether or not
|
|
# there is enough memory left to carry on the operation because it is assumed that the
|
|
# MemoryError happens when trying to read an image file, which is freed from memory by the
|
|
# time that MemoryError is raised.
|
|
j = j.start_subjob([2, 8])
|
|
logging.info('Preparing %d files' % len(files))
|
|
prepared = self.prepare_files(files, j)
|
|
logging.info('Finished preparing %d files' % len(prepared))
|
|
return self._do_getmatches(prepared, j)
|
|
|
|
def prepare_files(self, files, j=job.nulljob):
|
|
prepared = [] # only files for which there was no error getting blocks
|
|
try:
|
|
for picture in j.iter_with_progress(files, 'Analyzed %d/%d pictures'):
|
|
picture.dimensions
|
|
picture.unicode_path = unicode(picture.path)
|
|
try:
|
|
if picture.unicode_path not in self.cached_blocks:
|
|
blocks = picture.get_blocks(self.block_count_per_side)
|
|
self.cached_blocks[picture.unicode_path] = blocks
|
|
prepared.append(picture)
|
|
except IOError as e:
|
|
logging.warning(unicode(e))
|
|
except MemoryError:
|
|
logging.warning(u'Ran out of memory while reading %s of size %d' % (picture.unicode_path, picture.size))
|
|
if picture.size < 10 * 1024 * 1024: # We're really running out of memory
|
|
raise
|
|
except MemoryError:
|
|
logging.warning('Ran out of memory while preparing files')
|
|
return prepared
|
|
|
|
|
|
def async_compare(ref_id, other_ids, dbname, threshold):
|
|
cache = Cache(dbname, threaded=False)
|
|
limit = 100 - threshold
|
|
ref_blocks = cache[ref_id]
|
|
pairs = cache.get_multiple(other_ids)
|
|
results = []
|
|
for other_id, other_blocks in pairs:
|
|
try:
|
|
diff = avgdiff(ref_blocks, other_blocks, limit, MIN_ITERATIONS)
|
|
percentage = 100 - diff
|
|
except (DifferentBlockCountError, NoBlocksError):
|
|
percentage = 0
|
|
if percentage >= threshold:
|
|
results.append((ref_id, other_id, percentage))
|
|
cache.con.close()
|
|
return results
|
|
|
|
class AsyncMatchFactory(MatchFactory):
|
|
def _do_getmatches(self, pictures, j):
|
|
def empty_out_queue(queue, into):
|
|
try:
|
|
while True:
|
|
into.append(queue.get(block=False))
|
|
except Empty:
|
|
pass
|
|
|
|
j = j.start_subjob([1, 8, 1], 'Preparing for matching')
|
|
cache = self.cached_blocks
|
|
id2picture = {}
|
|
dimensions2pictures = defaultdict(set)
|
|
for picture in pictures[:]:
|
|
try:
|
|
picture.cache_id = cache.get_id(picture.unicode_path)
|
|
id2picture[picture.cache_id] = picture
|
|
except ValueError:
|
|
pictures.remove(picture)
|
|
if not self.match_scaled:
|
|
dimensions2pictures[picture.dimensions].add(picture)
|
|
pool = multiprocessing.Pool()
|
|
async_results = []
|
|
pictures_copy = set(pictures)
|
|
for ref in j.iter_with_progress(pictures):
|
|
others = pictures_copy if self.match_scaled else dimensions2pictures[ref.dimensions]
|
|
others.remove(ref)
|
|
if others:
|
|
cache_ids = [f.cache_id for f in others]
|
|
args = (ref.cache_id, cache_ids, self.cached_blocks.dbname, self.threshold)
|
|
async_results.append(pool.apply_async(async_compare, args))
|
|
|
|
matches = []
|
|
for result in j.iter_with_progress(async_results, 'Matched %d/%d pictures'):
|
|
matches.extend(result.get())
|
|
|
|
result = []
|
|
for ref_id, other_id, percentage in j.iter_with_progress(matches, 'Verified %d/%d matches', every=10):
|
|
ref = id2picture[ref_id]
|
|
other = id2picture[other_id]
|
|
if percentage == 100 and ref.md5 != other.md5:
|
|
percentage = 99
|
|
if percentage >= self.threshold:
|
|
result.append(get_match(ref, other, percentage))
|
|
return result
|
|
|
|
|
|
multiprocessing.freeze_support() |