1
0
mirror of https://github.com/arsenetar/dupeguru.git synced 2024-10-31 22:05:58 +00:00
dupeguru/core/tests/scanner_test.py

644 lines
19 KiB
Python

# Copyright 2016 Hardcoded Software (http://www.hardcoded.net)
#
# This software is licensed under the "GPLv3" License as described in the "LICENSE" file,
# which should be included with this package. The terms are also available at
# http://www.gnu.org/licenses/gpl-3.0.html
import pytest
from hscommon.jobprogress import job
from hscommon.path import Path
from hscommon.testutil import eq_
from .. import fs
from ..engine import getwords, Match
from ..ignore import IgnoreList
from ..scanner import Scanner, ScanType
from ..me.scanner import ScannerME
class NamedObject:
def __init__(self, name="foobar", size=1, path=None):
if path is None:
path = Path(name)
else:
path = Path(path)[name]
self.name = name
self.size = size
self.path = path
self.words = getwords(name)
def __repr__(self):
return "<NamedObject %r %r>" % (self.name, self.path)
no = NamedObject
@pytest.fixture
def fake_fileexists(request):
# This is a hack to avoid invalidating all previous tests since the scanner started to test
# for file existence before doing the match grouping.
monkeypatch = request.getfixturevalue("monkeypatch")
monkeypatch.setattr(Path, "exists", lambda _: True)
def test_empty(fake_fileexists):
s = Scanner()
r = s.get_dupe_groups([])
eq_(r, [])
def test_default_settings(fake_fileexists):
s = Scanner()
eq_(s.min_match_percentage, 80)
eq_(s.scan_type, ScanType.FILENAME)
eq_(s.mix_file_kind, True)
eq_(s.word_weighting, False)
eq_(s.match_similar_words, False)
eq_(s.size_threshold, 0)
eq_(s.large_size_threshold, 0)
eq_(s.big_file_size_threshold, 0)
def test_simple_with_default_settings(fake_fileexists):
s = Scanner()
f = [no("foo bar", path="p1"), no("foo bar", path="p2"), no("foo bleh")]
r = s.get_dupe_groups(f)
eq_(len(r), 1)
g = r[0]
# 'foo bleh' cannot be in the group because the default min match % is 80
eq_(len(g), 2)
assert g.ref in f[:2]
assert g.dupes[0] in f[:2]
def test_simple_with_lower_min_match(fake_fileexists):
s = Scanner()
s.min_match_percentage = 50
f = [no("foo bar", path="p1"), no("foo bar", path="p2"), no("foo bleh")]
r = s.get_dupe_groups(f)
eq_(len(r), 1)
g = r[0]
eq_(len(g), 3)
def test_trim_all_ref_groups(fake_fileexists):
# When all files of a group are ref, don't include that group in the results, but also don't
# count the files from that group as discarded.
s = Scanner()
f = [
no("foo", path="p1"),
no("foo", path="p2"),
no("bar", path="p1"),
no("bar", path="p2"),
]
f[2].is_ref = True
f[3].is_ref = True
r = s.get_dupe_groups(f)
eq_(len(r), 1)
eq_(s.discarded_file_count, 0)
def test_prioritize(fake_fileexists):
s = Scanner()
f = [
no("foo", path="p1"),
no("foo", path="p2"),
no("bar", path="p1"),
no("bar", path="p2"),
]
f[1].size = 2
f[2].size = 3
f[3].is_ref = True
r = s.get_dupe_groups(f)
g1, g2 = r
assert f[1] in (g1.ref, g2.ref)
assert f[0] in (g1.dupes[0], g2.dupes[0])
assert f[3] in (g1.ref, g2.ref)
assert f[2] in (g1.dupes[0], g2.dupes[0])
def test_content_scan(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.CONTENTS
f = [no("foo"), no("bar"), no("bleh")]
f[0].md5 = f[0].md5partial = f[0].md5samples = "foobar"
f[1].md5 = f[1].md5partial = f[1].md5samples = "foobar"
f[2].md5 = f[2].md5partial = f[1].md5samples = "bleh"
r = s.get_dupe_groups(f)
eq_(len(r), 1)
eq_(len(r[0]), 2)
eq_(s.discarded_file_count, 0) # don't count the different md5 as discarded!
def test_content_scan_compare_sizes_first(fake_fileexists):
class MyFile(no):
@property
def md5(self):
raise AssertionError()
s = Scanner()
s.scan_type = ScanType.CONTENTS
f = [MyFile("foo", 1), MyFile("bar", 2)]
eq_(len(s.get_dupe_groups(f)), 0)
def test_ignore_file_size(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.CONTENTS
small_size = 10 # 10KB
s.size_threshold = 0
large_size = 100 * 1024 * 1024 # 100MB
s.large_size_threshold = 0
f = [
no("smallignore1", small_size - 1),
no("smallignore2", small_size - 1),
no("small1", small_size),
no("small2", small_size),
no("large1", large_size),
no("large2", large_size),
no("largeignore1", large_size + 1),
no("largeignore2", large_size + 1),
]
f[0].md5 = f[0].md5partial = f[0].md5samples = "smallignore"
f[1].md5 = f[1].md5partial = f[1].md5samples = "smallignore"
f[2].md5 = f[2].md5partial = f[2].md5samples = "small"
f[3].md5 = f[3].md5partial = f[3].md5samples = "small"
f[4].md5 = f[4].md5partial = f[4].md5samples = "large"
f[5].md5 = f[5].md5partial = f[5].md5samples = "large"
f[6].md5 = f[6].md5partial = f[6].md5samples = "largeignore"
f[7].md5 = f[7].md5partial = f[7].md5samples = "largeignore"
r = s.get_dupe_groups(f)
# No ignores
eq_(len(r), 4)
# Ignore smaller
s.size_threshold = small_size
r = s.get_dupe_groups(f)
eq_(len(r), 3)
# Ignore larger
s.size_threshold = 0
s.large_size_threshold = large_size
r = s.get_dupe_groups(f)
eq_(len(r), 3)
# Ignore both
s.size_threshold = small_size
r = s.get_dupe_groups(f)
eq_(len(r), 2)
def test_big_file_partial_hashes(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.CONTENTS
smallsize = 1
bigsize = 100 * 1024 * 1024 # 100MB
s.big_file_size_threshold = bigsize
f = [no("bigfoo", bigsize), no("bigbar", bigsize), no("smallfoo", smallsize), no("smallbar", smallsize)]
f[0].md5 = f[0].md5partial = f[0].md5samples = "foobar"
f[1].md5 = f[1].md5partial = f[1].md5samples = "foobar"
f[2].md5 = f[2].md5partial = "bleh"
f[3].md5 = f[3].md5partial = "bleh"
r = s.get_dupe_groups(f)
eq_(len(r), 2)
# md5partial is still the same, but the file is actually different
f[1].md5 = f[1].md5samples = "difffoobar"
# here we compare the full md5s, as the user disabled the optimization
s.big_file_size_threshold = 0
r = s.get_dupe_groups(f)
eq_(len(r), 1)
# here we should compare the md5samples, and see they are different
s.big_file_size_threshold = bigsize
r = s.get_dupe_groups(f)
eq_(len(r), 1)
def test_min_match_perc_doesnt_matter_for_content_scan(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.CONTENTS
f = [no("foo"), no("bar"), no("bleh")]
f[0].md5 = f[0].md5partial = f[0].md5samples = "foobar"
f[1].md5 = f[1].md5partial = f[1].md5samples = "foobar"
f[2].md5 = f[2].md5partial = f[2].md5samples = "bleh"
s.min_match_percentage = 101
r = s.get_dupe_groups(f)
eq_(len(r), 1)
eq_(len(r[0]), 2)
s.min_match_percentage = 0
r = s.get_dupe_groups(f)
eq_(len(r), 1)
eq_(len(r[0]), 2)
def test_content_scan_doesnt_put_md5_in_words_at_the_end(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.CONTENTS
f = [no("foo"), no("bar")]
f[0].md5 = f[0].md5partial = f[0].md5samples = "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
f[1].md5 = f[1].md5partial = f[1].md5samples = "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
r = s.get_dupe_groups(f)
# FIXME looks like we are missing something here?
r[0]
def test_extension_is_not_counted_in_filename_scan(fake_fileexists):
s = Scanner()
s.min_match_percentage = 100
f = [no("foo.bar"), no("foo.bleh")]
r = s.get_dupe_groups(f)
eq_(len(r), 1)
eq_(len(r[0]), 2)
def test_job(fake_fileexists):
def do_progress(progress, desc=""):
log.append(progress)
return True
s = Scanner()
log = []
f = [no("foo bar"), no("foo bar"), no("foo bleh")]
s.get_dupe_groups(f, j=job.Job(1, do_progress))
eq_(log[0], 0)
eq_(log[-1], 100)
def test_mix_file_kind(fake_fileexists):
s = Scanner()
s.mix_file_kind = False
f = [no("foo.1"), no("foo.2")]
r = s.get_dupe_groups(f)
eq_(len(r), 0)
def test_word_weighting(fake_fileexists):
s = Scanner()
s.min_match_percentage = 75
s.word_weighting = True
f = [no("foo bar"), no("foo bar bleh")]
r = s.get_dupe_groups(f)
eq_(len(r), 1)
g = r[0]
m = g.get_match_of(g.dupes[0])
eq_(m.percentage, 75) # 16 letters, 12 matching
def test_similar_words(fake_fileexists):
s = Scanner()
s.match_similar_words = True
f = [
no("The White Stripes"),
no("The Whites Stripe"),
no("Limp Bizkit"),
no("Limp Bizkitt"),
]
r = s.get_dupe_groups(f)
eq_(len(r), 2)
def test_fields(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.FIELDS
f = [no("The White Stripes - Little Ghost"), no("The White Stripes - Little Acorn")]
r = s.get_dupe_groups(f)
eq_(len(r), 0)
def test_fields_no_order(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.FIELDSNOORDER
f = [no("The White Stripes - Little Ghost"), no("Little Ghost - The White Stripes")]
r = s.get_dupe_groups(f)
eq_(len(r), 1)
def test_tag_scan(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.TAG
o1 = no("foo")
o2 = no("bar")
o1.artist = "The White Stripes"
o1.title = "The Air Near My Fingers"
o2.artist = "The White Stripes"
o2.title = "The Air Near My Fingers"
r = s.get_dupe_groups([o1, o2])
eq_(len(r), 1)
def test_tag_with_album_scan(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.TAG
s.scanned_tags = set(["artist", "album", "title"])
o1 = no("foo")
o2 = no("bar")
o3 = no("bleh")
o1.artist = "The White Stripes"
o1.title = "The Air Near My Fingers"
o1.album = "Elephant"
o2.artist = "The White Stripes"
o2.title = "The Air Near My Fingers"
o2.album = "Elephant"
o3.artist = "The White Stripes"
o3.title = "The Air Near My Fingers"
o3.album = "foobar"
r = s.get_dupe_groups([o1, o2, o3])
eq_(len(r), 1)
def test_that_dash_in_tags_dont_create_new_fields(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.TAG
s.scanned_tags = set(["artist", "album", "title"])
s.min_match_percentage = 50
o1 = no("foo")
o2 = no("bar")
o1.artist = "The White Stripes - a"
o1.title = "The Air Near My Fingers - a"
o1.album = "Elephant - a"
o2.artist = "The White Stripes - b"
o2.title = "The Air Near My Fingers - b"
o2.album = "Elephant - b"
r = s.get_dupe_groups([o1, o2])
eq_(len(r), 1)
def test_tag_scan_with_different_scanned(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.TAG
s.scanned_tags = set(["track", "year"])
o1 = no("foo")
o2 = no("bar")
o1.artist = "The White Stripes"
o1.title = "some title"
o1.track = "foo"
o1.year = "bar"
o2.artist = "The White Stripes"
o2.title = "another title"
o2.track = "foo"
o2.year = "bar"
r = s.get_dupe_groups([o1, o2])
eq_(len(r), 1)
def test_tag_scan_only_scans_existing_tags(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.TAG
s.scanned_tags = set(["artist", "foo"])
o1 = no("foo")
o2 = no("bar")
o1.artist = "The White Stripes"
o1.foo = "foo"
o2.artist = "The White Stripes"
o2.foo = "bar"
r = s.get_dupe_groups([o1, o2])
eq_(len(r), 1) # Because 'foo' is not scanned, they match
def test_tag_scan_converts_to_str(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.TAG
s.scanned_tags = set(["track"])
o1 = no("foo")
o2 = no("bar")
o1.track = 42
o2.track = 42
try:
r = s.get_dupe_groups([o1, o2])
except TypeError:
raise AssertionError()
eq_(len(r), 1)
def test_tag_scan_non_ascii(fake_fileexists):
s = Scanner()
s.scan_type = ScanType.TAG
s.scanned_tags = set(["title"])
o1 = no("foo")
o2 = no("bar")
o1.title = "foobar\u00e9"
o2.title = "foobar\u00e9"
try:
r = s.get_dupe_groups([o1, o2])
except UnicodeEncodeError:
raise AssertionError()
eq_(len(r), 1)
def test_ignore_list(fake_fileexists):
s = Scanner()
f1 = no("foobar")
f2 = no("foobar")
f3 = no("foobar")
f1.path = Path("dir1/foobar")
f2.path = Path("dir2/foobar")
f3.path = Path("dir3/foobar")
ignore_list = IgnoreList()
ignore_list.ignore(str(f1.path), str(f2.path))
ignore_list.ignore(str(f1.path), str(f3.path))
r = s.get_dupe_groups([f1, f2, f3], ignore_list=ignore_list)
eq_(len(r), 1)
g = r[0]
eq_(len(g.dupes), 1)
assert f1 not in g
assert f2 in g
assert f3 in g
# Ignored matches are not counted as discarded
eq_(s.discarded_file_count, 0)
def test_ignore_list_checks_for_unicode(fake_fileexists):
# scanner was calling path_str for ignore list checks. Since the Path changes, it must
# be unicode(path)
s = Scanner()
f1 = no("foobar")
f2 = no("foobar")
f3 = no("foobar")
f1.path = Path("foo1\u00e9")
f2.path = Path("foo2\u00e9")
f3.path = Path("foo3\u00e9")
ignore_list = IgnoreList()
ignore_list.ignore(str(f1.path), str(f2.path))
ignore_list.ignore(str(f1.path), str(f3.path))
r = s.get_dupe_groups([f1, f2, f3], ignore_list=ignore_list)
eq_(len(r), 1)
g = r[0]
eq_(len(g.dupes), 1)
assert f1 not in g
assert f2 in g
assert f3 in g
def test_file_evaluates_to_false(fake_fileexists):
# A very wrong way to use any() was added at some point, causing resulting group list
# to be empty.
class FalseNamedObject(NamedObject):
def __bool__(self):
return False
s = Scanner()
f1 = FalseNamedObject("foobar", path="p1")
f2 = FalseNamedObject("foobar", path="p2")
r = s.get_dupe_groups([f1, f2])
eq_(len(r), 1)
def test_size_threshold(fake_fileexists):
# Only file equal or higher than the size_threshold in size are scanned
s = Scanner()
f1 = no("foo", 1, path="p1")
f2 = no("foo", 2, path="p2")
f3 = no("foo", 3, path="p3")
s.size_threshold = 2
groups = s.get_dupe_groups([f1, f2, f3])
eq_(len(groups), 1)
[group] = groups
eq_(len(group), 2)
assert f1 not in group
assert f2 in group
assert f3 in group
def test_tie_breaker_path_deepness(fake_fileexists):
# If there is a tie in prioritization, path deepness is used as a tie breaker
s = Scanner()
o1, o2 = no("foo"), no("foo")
o1.path = Path("foo")
o2.path = Path("foo/bar")
[group] = s.get_dupe_groups([o1, o2])
assert group.ref is o2
def test_tie_breaker_copy(fake_fileexists):
# if copy is in the words used (even if it has a deeper path), it becomes a dupe
s = Scanner()
o1, o2 = no("foo bar Copy"), no("foo bar")
o1.path = Path("deeper/path")
o2.path = Path("foo")
[group] = s.get_dupe_groups([o1, o2])
assert group.ref is o2
def test_tie_breaker_same_name_plus_digit(fake_fileexists):
# if ref has the same words as dupe, but has some just one extra word which is a digit, it
# becomes a dupe
s = Scanner()
o1 = no("foo bar 42")
o2 = no("foo bar [42]")
o3 = no("foo bar (42)")
o4 = no("foo bar {42}")
o5 = no("foo bar")
# all numbered names have deeper paths, so they'll end up ref if the digits aren't correctly
# used as tie breakers
o1.path = Path("deeper/path")
o2.path = Path("deeper/path")
o3.path = Path("deeper/path")
o4.path = Path("deeper/path")
o5.path = Path("foo")
[group] = s.get_dupe_groups([o1, o2, o3, o4, o5])
assert group.ref is o5
def test_partial_group_match(fake_fileexists):
# Count the number of discarded matches (when a file doesn't match all other dupes of the
# group) in Scanner.discarded_file_count
s = Scanner()
o1, o2, o3 = no("a b"), no("a"), no("b")
s.min_match_percentage = 50
[group] = s.get_dupe_groups([o1, o2, o3])
eq_(len(group), 2)
assert o1 in group
# The file that will actually be counted as a dupe is undefined. The only thing we want to test
# is that we don't have both
if o2 in group:
assert o3 not in group
else:
assert o3 in group
eq_(s.discarded_file_count, 1)
def test_dont_group_files_that_dont_exist(tmpdir):
# when creating groups, check that files exist first. It's possible that these files have
# been moved during the scan by the user.
# In this test, we have to delete one of the files between the get_matches() part and the
# get_groups() part.
s = Scanner()
s.scan_type = ScanType.CONTENTS
p = Path(str(tmpdir))
p["file1"].open("w").write("foo")
p["file2"].open("w").write("foo")
file1, file2 = fs.get_files(p)
def getmatches(*args, **kw):
file2.path.remove()
return [Match(file1, file2, 100)]
s._getmatches = getmatches
assert not s.get_dupe_groups([file1, file2])
def test_folder_scan_exclude_subfolder_matches(fake_fileexists):
# when doing a Folders scan type, don't include matches for folders whose parent folder already
# match.
s = Scanner()
s.scan_type = ScanType.FOLDERS
topf1 = no("top folder 1", size=42)
topf1.md5 = topf1.md5partial = topf1.md5samples = b"some_md5_1"
topf1.path = Path("/topf1")
topf2 = no("top folder 2", size=42)
topf2.md5 = topf2.md5partial = topf2.md5samples = b"some_md5_1"
topf2.path = Path("/topf2")
subf1 = no("sub folder 1", size=41)
subf1.md5 = subf1.md5partial = subf1.md5samples = b"some_md5_2"
subf1.path = Path("/topf1/sub")
subf2 = no("sub folder 2", size=41)
subf2.md5 = subf2.md5partial = subf2.md5samples = b"some_md5_2"
subf2.path = Path("/topf2/sub")
eq_(len(s.get_dupe_groups([topf1, topf2, subf1, subf2])), 1) # only top folders
# however, if another folder matches a subfolder, keep in in the matches
otherf = no("other folder", size=41)
otherf.md5 = otherf.md5partial = otherf.md5samples = b"some_md5_2"
otherf.path = Path("/otherfolder")
eq_(len(s.get_dupe_groups([topf1, topf2, subf1, subf2, otherf])), 2)
def test_ignore_files_with_same_path(fake_fileexists):
# It's possible that the scanner is fed with two file instances pointing to the same path. One
# of these files has to be ignored
s = Scanner()
f1 = no("foobar", path="path1/foobar")
f2 = no("foobar", path="path1/foobar")
eq_(s.get_dupe_groups([f1, f2]), [])
def test_dont_count_ref_files_as_discarded(fake_fileexists):
# To speed up the scan, we don't bother comparing contents of files that are both ref files.
# However, this causes problems in "discarded" counting and we make sure here that we don't
# report discarded matches in exact duplicate scans.
s = Scanner()
s.scan_type = ScanType.CONTENTS
o1 = no("foo", path="p1")
o2 = no("foo", path="p2")
o3 = no("foo", path="p3")
o1.md5 = o1.md5partial = o1.md5samples = "foobar"
o2.md5 = o2.md5partial = o2.md5samples = "foobar"
o3.md5 = o3.md5partial = o3.md5samples = "foobar"
o1.is_ref = True
o2.is_ref = True
eq_(len(s.get_dupe_groups([o1, o2, o3])), 1)
eq_(s.discarded_file_count, 0)
def test_prioritize_me(fake_fileexists):
# in ScannerME, bitrate goes first (right after is_ref) in prioritization
s = ScannerME()
o1, o2 = no("foo", path="p1"), no("foo", path="p2")
o1.bitrate = 1
o2.bitrate = 2
[group] = s.get_dupe_groups([o1, o2])
assert group.ref is o2