1
0
mirror of https://github.com/arsenetar/dupeguru.git synced 2024-11-16 20:29:02 +00:00
dupeguru/core/engine.py
Virgil Dupras 70e505ad92 Tweaked Make Selected into Reference.
Having dupes from ref folders (which makes ref switching impossible) would make
the new feature glitchy (selection would be emptied). Now, in cases where the action
results in nothing being changed, the selection stays intact. [#222]
2013-04-28 14:12:08 -04:00

399 lines
14 KiB
Python

# Created By: Virgil Dupras
# Created On: 2006/01/29
# Copyright 2013 Hardcoded Software (http://www.hardcoded.net)
#
# This software is licensed under the "BSD" License as described in the "LICENSE" file,
# which should be included with this package. The terms are also available at
# http://www.hardcoded.net/licenses/bsd_license
import difflib
import itertools
import logging
import string
from collections import defaultdict, namedtuple
from unicodedata import normalize
from hscommon.util import flatten, multi_replace
from hscommon.trans import tr
from jobprogress import job
(WEIGHT_WORDS,
MATCH_SIMILAR_WORDS,
NO_FIELD_ORDER) = range(3)
JOB_REFRESH_RATE = 100
def getwords(s):
# We decompose the string so that ascii letters with accents can be part of the word.
s = normalize('NFD', s)
s = multi_replace(s, "-_&+():;\\[]{}.,<>/?~!@#$*", ' ').lower()
s = ''.join(c for c in s if c in string.ascii_letters + string.digits + string.whitespace)
return [_f for _f in s.split(' ') if _f] # remove empty elements
def getfields(s):
fields = [getwords(field) for field in s.split(' - ')]
return [_f for _f in fields if _f]
def unpack_fields(fields):
result = []
for field in fields:
if isinstance(field, list):
result += field
else:
result.append(field)
return result
def compare(first, second, flags=()):
"""Returns the % of words that match between first and second
The result is a int in the range 0..100.
First and second can be either a string or a list.
"""
if not (first and second):
return 0
if any(isinstance(element, list) for element in first):
return compare_fields(first, second, flags)
second = second[:] #We must use a copy of second because we remove items from it
match_similar = MATCH_SIMILAR_WORDS in flags
weight_words = WEIGHT_WORDS in flags
joined = first + second
total_count = (sum(len(word) for word in joined) if weight_words else len(joined))
match_count = 0
in_order = True
for word in first:
if match_similar and (word not in second):
similar = difflib.get_close_matches(word, second, 1, 0.8)
if similar:
word = similar[0]
if word in second:
if second[0] != word:
in_order = False
second.remove(word)
match_count += (len(word) if weight_words else 1)
result = round(((match_count * 2) / total_count) * 100)
if (result == 100) and (not in_order):
result = 99 # We cannot consider a match exact unless the ordering is the same
return result
def compare_fields(first, second, flags=()):
"""Returns the score for the lowest matching fields.
first and second must be lists of lists of string.
"""
if len(first) != len(second):
return 0
if NO_FIELD_ORDER in flags:
results = []
#We don't want to remove field directly in the list. We must work on a copy.
second = second[:]
for field1 in first:
max = 0
matched_field = None
for field2 in second:
r = compare(field1, field2, flags)
if r > max:
max = r
matched_field = field2
results.append(max)
if matched_field:
second.remove(matched_field)
else:
results = [compare(word1, word2, flags) for word1, word2 in zip(first, second)]
return min(results) if results else 0
def build_word_dict(objects, j=job.nulljob):
"""Returns a dict of objects mapped by their words.
objects must have a 'words' attribute being a list of strings or a list of lists of strings.
The result will be a dict with words as keys, lists of objects as values.
"""
result = defaultdict(set)
for object in j.iter_with_progress(objects, 'Prepared %d/%d files', JOB_REFRESH_RATE):
for word in unpack_fields(object.words):
result[word].add(object)
return result
def merge_similar_words(word_dict):
"""Take all keys in word_dict that are similar, and merge them together.
"""
keys = list(word_dict.keys())
keys.sort(key=len)# we want the shortest word to stay
while keys:
key = keys.pop(0)
similars = difflib.get_close_matches(key, keys, 100, 0.8)
if not similars:
continue
objects = word_dict[key]
for similar in similars:
objects |= word_dict[similar]
del word_dict[similar]
keys.remove(similar)
def reduce_common_words(word_dict, threshold):
"""Remove all objects from word_dict values where the object count >= threshold
The exception to this removal are the objects where all the words of the object are common.
Because if we remove them, we will miss some duplicates!
"""
uncommon_words = set(word for word, objects in word_dict.items() if len(objects) < threshold)
for word, objects in list(word_dict.items()):
if len(objects) < threshold:
continue
reduced = set()
for o in objects:
if not any(w in uncommon_words for w in unpack_fields(o.words)):
reduced.add(o)
if reduced:
word_dict[word] = reduced
else:
del word_dict[word]
Match = namedtuple('Match', 'first second percentage')
def get_match(first, second, flags=()):
#it is assumed here that first and second both have a "words" attribute
percentage = compare(first.words, second.words, flags)
return Match(first, second, percentage)
def getmatches(objects, min_match_percentage=0, match_similar_words=False, weight_words=False,
no_field_order=False, j=job.nulljob):
COMMON_WORD_THRESHOLD = 50
LIMIT = 5000000
j = j.start_subjob(2)
sj = j.start_subjob(2)
for o in objects:
if not hasattr(o, 'words'):
o.words = getwords(o.name)
word_dict = build_word_dict(objects, sj)
reduce_common_words(word_dict, COMMON_WORD_THRESHOLD)
if match_similar_words:
merge_similar_words(word_dict)
match_flags = []
if weight_words:
match_flags.append(WEIGHT_WORDS)
if match_similar_words:
match_flags.append(MATCH_SIMILAR_WORDS)
if no_field_order:
match_flags.append(NO_FIELD_ORDER)
j.start_job(len(word_dict), tr("0 matches found"))
compared = defaultdict(set)
result = []
try:
# This whole 'popping' thing is there to avoid taking too much memory at the same time.
while word_dict:
items = word_dict.popitem()[1]
while items:
ref = items.pop()
compared_already = compared[ref]
to_compare = items - compared_already
compared_already |= to_compare
for other in to_compare:
m = get_match(ref, other, match_flags)
if m.percentage >= min_match_percentage:
result.append(m)
if len(result) >= LIMIT:
return result
j.add_progress(desc=tr("%d matches found") % len(result))
except MemoryError:
# This is the place where the memory usage is at its peak during the scan.
# Just continue the process with an incomplete list of matches.
del compared # This should give us enough room to call logging.
logging.warning('Memory Overflow. Matches: %d. Word dict: %d' % (len(result), len(word_dict)))
return result
return result
def getmatches_by_contents(files, sizeattr='size', partial=False, j=job.nulljob):
j = j.start_subjob([2, 8])
size2files = defaultdict(set)
for file in j.iter_with_progress(files, tr("Read size of %d/%d files")):
filesize = getattr(file, sizeattr)
if filesize:
size2files[filesize].add(file)
possible_matches = [files for files in size2files.values() if len(files) > 1]
del size2files
result = []
j.start_job(len(possible_matches), tr("0 matches found"))
for group in possible_matches:
for first, second in itertools.combinations(group, 2):
if first.is_ref and second.is_ref:
continue # Don't spend time comparing two ref pics together.
if first.md5partial == second.md5partial:
if partial or first.md5 == second.md5:
result.append(Match(first, second, 100))
j.add_progress(desc=tr("%d matches found") % len(result))
return result
class Group:
#---Override
def __init__(self):
self._clear()
def __contains__(self, item):
return item in self.unordered
def __getitem__(self, key):
return self.ordered.__getitem__(key)
def __iter__(self):
return iter(self.ordered)
def __len__(self):
return len(self.ordered)
#---Private
def _clear(self):
self._percentage = None
self._matches_for_ref = None
self.matches = set()
self.candidates = defaultdict(set)
self.ordered = []
self.unordered = set()
def _get_matches_for_ref(self):
if self._matches_for_ref is None:
ref = self.ref
self._matches_for_ref = [match for match in self.matches if ref in match]
return self._matches_for_ref
#---Public
def add_match(self, match):
def add_candidate(item, match):
matches = self.candidates[item]
matches.add(match)
if self.unordered <= matches:
self.ordered.append(item)
self.unordered.add(item)
if match in self.matches:
return
self.matches.add(match)
first, second, _ = match
if first not in self.unordered:
add_candidate(first, second)
if second not in self.unordered:
add_candidate(second, first)
self._percentage = None
self._matches_for_ref = None
def discard_matches(self):
discarded = set(m for m in self.matches if not all(obj in self.unordered for obj in [m.first, m.second]))
self.matches -= discarded
self.candidates = defaultdict(set)
return discarded
def get_match_of(self, item):
if item is self.ref:
return
for m in self._get_matches_for_ref():
if item in m:
return m
def prioritize(self, key_func, tie_breaker=None):
# tie_breaker(ref, dupe) --> True if dupe should be ref
# Returns True if anything changed during prioritization.
master_key_func = lambda x: (-x.is_ref, key_func(x))
new_order = sorted(self.ordered, key=master_key_func)
changed = new_order != self.ordered
self.ordered = new_order
if tie_breaker is None:
return changed
ref = self.ref
key_value = key_func(ref)
for dupe in self.dupes:
if key_func(dupe) != key_value:
break
if tie_breaker(ref, dupe):
ref = dupe
if ref is not self.ref:
self.switch_ref(ref)
return True
return changed
def remove_dupe(self, item, discard_matches=True):
try:
self.ordered.remove(item)
self.unordered.remove(item)
self._percentage = None
self._matches_for_ref = None
if (len(self) > 1) and any(not getattr(item, 'is_ref', False) for item in self):
if discard_matches:
self.matches = set(m for m in self.matches if item not in m)
else:
self._clear()
except ValueError:
pass
def switch_ref(self, with_dupe):
if self.ref.is_ref:
return False
try:
self.ordered.remove(with_dupe)
self.ordered.insert(0, with_dupe)
self._percentage = None
self._matches_for_ref = None
return True
except ValueError:
return False
dupes = property(lambda self: self[1:])
@property
def percentage(self):
if self._percentage is None:
if self.dupes:
matches = self._get_matches_for_ref()
self._percentage = sum(match.percentage for match in matches) // len(matches)
else:
self._percentage = 0
return self._percentage
@property
def ref(self):
if self:
return self[0]
def get_groups(matches, j=job.nulljob):
matches.sort(key=lambda match: -match.percentage)
dupe2group = {}
groups = []
try:
for match in j.iter_with_progress(matches, tr("Grouped %d/%d matches"), JOB_REFRESH_RATE):
first, second, _ = match
first_group = dupe2group.get(first)
second_group = dupe2group.get(second)
if first_group:
if second_group:
if first_group is second_group:
target_group = first_group
else:
continue
else:
target_group = first_group
dupe2group[second] = target_group
else:
if second_group:
target_group = second_group
dupe2group[first] = target_group
else:
target_group = Group()
groups.append(target_group)
dupe2group[first] = target_group
dupe2group[second] = target_group
target_group.add_match(match)
except MemoryError:
del dupe2group
del matches
# should free enough memory to continue
logging.warning('Memory Overflow. Groups: {0}'.format(len(groups)))
# Now that we have a group, we have to discard groups' matches and see if there're any "orphan"
# matches, that is, matches that were candidate in a group but that none of their 2 files were
# accepted in the group. With these orphan groups, it's safe to build additional groups
matched_files = set(flatten(groups))
orphan_matches = []
for group in groups:
orphan_matches += set(m for m in group.discard_matches() if not any(obj in matched_files for obj in [m.first, m.second]))
if groups and orphan_matches:
groups += get_groups(orphan_matches) # no job, as it isn't supposed to take a long time
return groups