mirror of
https://github.com/arsenetar/dupeguru.git
synced 2024-11-16 04:09:02 +00:00
361 lines
12 KiB
Python
361 lines
12 KiB
Python
|
#!/usr/bin/env python
|
||
|
"""
|
||
|
Unit Name: dupeguru.engine
|
||
|
Created By: Virgil Dupras
|
||
|
Created On: 2006/01/29
|
||
|
Last modified by:$Author: virgil $
|
||
|
Last modified on:$Date: $
|
||
|
$Revision: $
|
||
|
Copyright 2007 Hardcoded Software (http://www.hardcoded.net)
|
||
|
"""
|
||
|
from __future__ import division
|
||
|
import difflib
|
||
|
import logging
|
||
|
import string
|
||
|
from collections import defaultdict, namedtuple
|
||
|
from unicodedata import normalize
|
||
|
|
||
|
from hsutil.str import multi_replace
|
||
|
from hsutil import job
|
||
|
|
||
|
(WEIGHT_WORDS,
|
||
|
MATCH_SIMILAR_WORDS,
|
||
|
NO_FIELD_ORDER) = range(3)
|
||
|
|
||
|
JOB_REFRESH_RATE = 100
|
||
|
|
||
|
def getwords(s):
|
||
|
if isinstance(s, unicode):
|
||
|
s = normalize('NFD', s)
|
||
|
s = multi_replace(s, "-_&+():;\\[]{}.,<>/?~!@#$*", ' ').lower()
|
||
|
s = ''.join(c for c in s if c in string.ascii_letters + string.digits + string.whitespace)
|
||
|
return filter(None, s.split(' ')) # filter() is to remove empty elements
|
||
|
|
||
|
def getfields(s):
|
||
|
fields = [getwords(field) for field in s.split(' - ')]
|
||
|
return filter(None, fields)
|
||
|
|
||
|
def unpack_fields(fields):
|
||
|
result = []
|
||
|
for field in fields:
|
||
|
if isinstance(field, list):
|
||
|
result += field
|
||
|
else:
|
||
|
result.append(field)
|
||
|
return result
|
||
|
|
||
|
def compare(first, second, flags=()):
|
||
|
"""Returns the % of words that match between first and second
|
||
|
|
||
|
The result is a int in the range 0..100.
|
||
|
First and second can be either a string or a list.
|
||
|
"""
|
||
|
if not (first and second):
|
||
|
return 0
|
||
|
if any(isinstance(element, list) for element in first):
|
||
|
return compare_fields(first, second, flags)
|
||
|
second = second[:] #We must use a copy of second because we remove items from it
|
||
|
match_similar = MATCH_SIMILAR_WORDS in flags
|
||
|
weight_words = WEIGHT_WORDS in flags
|
||
|
joined = first + second
|
||
|
total_count = (sum(len(word) for word in joined) if weight_words else len(joined))
|
||
|
match_count = 0
|
||
|
in_order = True
|
||
|
for word in first:
|
||
|
if match_similar and (word not in second):
|
||
|
similar = difflib.get_close_matches(word, second, 1, 0.8)
|
||
|
if similar:
|
||
|
word = similar[0]
|
||
|
if word in second:
|
||
|
if second[0] != word:
|
||
|
in_order = False
|
||
|
second.remove(word)
|
||
|
match_count += (len(word) if weight_words else 1)
|
||
|
result = round(((match_count * 2) / total_count) * 100)
|
||
|
if (result == 100) and (not in_order):
|
||
|
result = 99 # We cannot consider a match exact unless the ordering is the same
|
||
|
return result
|
||
|
|
||
|
def compare_fields(first, second, flags=()):
|
||
|
"""Returns the score for the lowest matching fields.
|
||
|
|
||
|
first and second must be lists of lists of string.
|
||
|
"""
|
||
|
if len(first) != len(second):
|
||
|
return 0
|
||
|
if NO_FIELD_ORDER in flags:
|
||
|
results = []
|
||
|
#We don't want to remove field directly in the list. We must work on a copy.
|
||
|
second = second[:]
|
||
|
for field1 in first:
|
||
|
max = 0
|
||
|
matched_field = None
|
||
|
for field2 in second:
|
||
|
r = compare(field1, field2, flags)
|
||
|
if r > max:
|
||
|
max = r
|
||
|
matched_field = field2
|
||
|
results.append(max)
|
||
|
if matched_field:
|
||
|
second.remove(matched_field)
|
||
|
else:
|
||
|
results = [compare(word1, word2, flags) for word1, word2 in zip(first, second)]
|
||
|
return min(results) if results else 0
|
||
|
|
||
|
def build_word_dict(objects, j=job.nulljob):
|
||
|
"""Returns a dict of objects mapped by their words.
|
||
|
|
||
|
objects must have a 'words' attribute being a list of strings or a list of lists of strings.
|
||
|
|
||
|
The result will be a dict with words as keys, lists of objects as values.
|
||
|
"""
|
||
|
result = defaultdict(set)
|
||
|
for object in j.iter_with_progress(objects, 'Prepared %d/%d files', JOB_REFRESH_RATE):
|
||
|
for word in unpack_fields(object.words):
|
||
|
result[word].add(object)
|
||
|
return result
|
||
|
|
||
|
def merge_similar_words(word_dict):
|
||
|
"""Take all keys in word_dict that are similar, and merge them together.
|
||
|
"""
|
||
|
keys = word_dict.keys()
|
||
|
keys.sort(key=len)# we want the shortest word to stay
|
||
|
while keys:
|
||
|
key = keys.pop(0)
|
||
|
similars = difflib.get_close_matches(key, keys, 100, 0.8)
|
||
|
if not similars:
|
||
|
continue
|
||
|
objects = word_dict[key]
|
||
|
for similar in similars:
|
||
|
objects |= word_dict[similar]
|
||
|
del word_dict[similar]
|
||
|
keys.remove(similar)
|
||
|
|
||
|
def reduce_common_words(word_dict, threshold):
|
||
|
"""Remove all objects from word_dict values where the object count >= threshold
|
||
|
|
||
|
The exception to this removal are the objects where all the words of the object are common.
|
||
|
Because if we remove them, we will miss some duplicates!
|
||
|
"""
|
||
|
uncommon_words = set(word for word, objects in word_dict.items() if len(objects) < threshold)
|
||
|
for word, objects in word_dict.items():
|
||
|
if len(objects) < threshold:
|
||
|
continue
|
||
|
reduced = set()
|
||
|
for o in objects:
|
||
|
if not any(w in uncommon_words for w in unpack_fields(o.words)):
|
||
|
reduced.add(o)
|
||
|
if reduced:
|
||
|
word_dict[word] = reduced
|
||
|
else:
|
||
|
del word_dict[word]
|
||
|
|
||
|
Match = namedtuple('Match', 'first second percentage')
|
||
|
def get_match(first, second, flags=()):
|
||
|
#it is assumed here that first and second both have a "words" attribute
|
||
|
percentage = compare(first.words, second.words, flags)
|
||
|
return Match(first, second, percentage)
|
||
|
|
||
|
class MatchFactory(object):
|
||
|
common_word_threshold = 50
|
||
|
match_similar_words = False
|
||
|
min_match_percentage = 0
|
||
|
weight_words = False
|
||
|
no_field_order = False
|
||
|
limit = 5000000
|
||
|
|
||
|
def getmatches(self, objects, j=job.nulljob):
|
||
|
j = j.start_subjob(2)
|
||
|
sj = j.start_subjob(2)
|
||
|
for o in objects:
|
||
|
if not hasattr(o, 'words'):
|
||
|
o.words = getwords(o.name)
|
||
|
word_dict = build_word_dict(objects, sj)
|
||
|
reduce_common_words(word_dict, self.common_word_threshold)
|
||
|
if self.match_similar_words:
|
||
|
merge_similar_words(word_dict)
|
||
|
match_flags = []
|
||
|
if self.weight_words:
|
||
|
match_flags.append(WEIGHT_WORDS)
|
||
|
if self.match_similar_words:
|
||
|
match_flags.append(MATCH_SIMILAR_WORDS)
|
||
|
if self.no_field_order:
|
||
|
match_flags.append(NO_FIELD_ORDER)
|
||
|
j.start_job(len(word_dict), '0 matches found')
|
||
|
compared = defaultdict(set)
|
||
|
result = []
|
||
|
try:
|
||
|
# This whole 'popping' thing is there to avoid taking too much memory at the same time.
|
||
|
while word_dict:
|
||
|
items = word_dict.popitem()[1]
|
||
|
while items:
|
||
|
ref = items.pop()
|
||
|
compared_already = compared[ref]
|
||
|
to_compare = items - compared_already
|
||
|
compared_already |= to_compare
|
||
|
for other in to_compare:
|
||
|
m = get_match(ref, other, match_flags)
|
||
|
if m.percentage >= self.min_match_percentage:
|
||
|
result.append(m)
|
||
|
if len(result) >= self.limit:
|
||
|
return result
|
||
|
j.add_progress(desc='%d matches found' % len(result))
|
||
|
except MemoryError:
|
||
|
# This is the place where the memory usage is at its peak during the scan.
|
||
|
# Just continue the process with an incomplete list of matches.
|
||
|
del compared # This should give us enough room to call logging.
|
||
|
logging.warning('Memory Overflow. Matches: %d. Word dict: %d' % (len(result), len(word_dict)))
|
||
|
return result
|
||
|
return result
|
||
|
|
||
|
|
||
|
class Group(object):
|
||
|
#---Override
|
||
|
def __init__(self):
|
||
|
self._clear()
|
||
|
|
||
|
def __contains__(self, item):
|
||
|
return item in self.unordered
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
return self.ordered.__getitem__(key)
|
||
|
|
||
|
def __iter__(self):
|
||
|
return iter(self.ordered)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.ordered)
|
||
|
|
||
|
#---Private
|
||
|
def _clear(self):
|
||
|
self._percentage = None
|
||
|
self._matches_for_ref = None
|
||
|
self.matches = set()
|
||
|
self.candidates = defaultdict(set)
|
||
|
self.ordered = []
|
||
|
self.unordered = set()
|
||
|
|
||
|
def _get_matches_for_ref(self):
|
||
|
if self._matches_for_ref is None:
|
||
|
ref = self.ref
|
||
|
self._matches_for_ref = [match for match in self.matches if ref in match]
|
||
|
return self._matches_for_ref
|
||
|
|
||
|
#---Public
|
||
|
def add_match(self, match):
|
||
|
def add_candidate(item, match):
|
||
|
matches = self.candidates[item]
|
||
|
matches.add(match)
|
||
|
if self.unordered <= matches:
|
||
|
self.ordered.append(item)
|
||
|
self.unordered.add(item)
|
||
|
|
||
|
if match in self.matches:
|
||
|
return
|
||
|
self.matches.add(match)
|
||
|
first, second, _ = match
|
||
|
if first not in self.unordered:
|
||
|
add_candidate(first, second)
|
||
|
if second not in self.unordered:
|
||
|
add_candidate(second, first)
|
||
|
self._percentage = None
|
||
|
self._matches_for_ref = None
|
||
|
|
||
|
def clean_matches(self):
|
||
|
self.matches = set(m for m in self.matches if (m.first in self.unordered) and (m.second in self.unordered))
|
||
|
self.candidates = defaultdict(set)
|
||
|
|
||
|
def get_match_of(self, item):
|
||
|
if item is self.ref:
|
||
|
return
|
||
|
for m in self._get_matches_for_ref():
|
||
|
if item in m:
|
||
|
return m
|
||
|
|
||
|
def prioritize(self, key_func, tie_breaker=None):
|
||
|
# tie_breaker(ref, dupe) --> True if dupe should be ref
|
||
|
self.ordered.sort(key=key_func)
|
||
|
if tie_breaker is None:
|
||
|
return
|
||
|
ref = self.ref
|
||
|
key_value = key_func(ref)
|
||
|
for dupe in self.dupes:
|
||
|
if key_func(dupe) != key_value:
|
||
|
break
|
||
|
if tie_breaker(ref, dupe):
|
||
|
ref = dupe
|
||
|
if ref is not self.ref:
|
||
|
self.switch_ref(ref)
|
||
|
|
||
|
def remove_dupe(self, item, clean_matches=True):
|
||
|
try:
|
||
|
self.ordered.remove(item)
|
||
|
self.unordered.remove(item)
|
||
|
self._percentage = None
|
||
|
self._matches_for_ref = None
|
||
|
if (len(self) > 1) and any(not getattr(item, 'is_ref', False) for item in self):
|
||
|
if clean_matches:
|
||
|
self.matches = set(m for m in self.matches if item not in m)
|
||
|
else:
|
||
|
self._clear()
|
||
|
except ValueError:
|
||
|
pass
|
||
|
|
||
|
def switch_ref(self, with_dupe):
|
||
|
try:
|
||
|
self.ordered.remove(with_dupe)
|
||
|
self.ordered.insert(0, with_dupe)
|
||
|
self._percentage = None
|
||
|
self._matches_for_ref = None
|
||
|
except ValueError:
|
||
|
pass
|
||
|
|
||
|
dupes = property(lambda self: self[1:])
|
||
|
|
||
|
@property
|
||
|
def percentage(self):
|
||
|
if self._percentage is None:
|
||
|
if self.dupes:
|
||
|
matches = self._get_matches_for_ref()
|
||
|
self._percentage = sum(match.percentage for match in matches) // len(matches)
|
||
|
else:
|
||
|
self._percentage = 0
|
||
|
return self._percentage
|
||
|
|
||
|
@property
|
||
|
def ref(self):
|
||
|
if self:
|
||
|
return self[0]
|
||
|
|
||
|
|
||
|
def get_groups(matches, j=job.nulljob):
|
||
|
matches.sort(key=lambda match: -match.percentage)
|
||
|
dupe2group = {}
|
||
|
groups = []
|
||
|
for match in j.iter_with_progress(matches, 'Grouped %d/%d matches', JOB_REFRESH_RATE):
|
||
|
first, second, _ = match
|
||
|
first_group = dupe2group.get(first)
|
||
|
second_group = dupe2group.get(second)
|
||
|
if first_group:
|
||
|
if second_group:
|
||
|
if first_group is second_group:
|
||
|
target_group = first_group
|
||
|
else:
|
||
|
continue
|
||
|
else:
|
||
|
target_group = first_group
|
||
|
dupe2group[second] = target_group
|
||
|
else:
|
||
|
if second_group:
|
||
|
target_group = second_group
|
||
|
dupe2group[first] = target_group
|
||
|
else:
|
||
|
target_group = Group()
|
||
|
groups.append(target_group)
|
||
|
dupe2group[first] = target_group
|
||
|
dupe2group[second] = target_group
|
||
|
target_group.add_match(match)
|
||
|
for group in groups:
|
||
|
group.clean_matches()
|
||
|
return groups
|