1
0
mirror of https://github.com/arsenetar/dupeguru.git synced 2024-11-18 04:59:03 +00:00
dupeguru/base/py/engine.py

361 lines
12 KiB
Python
Raw Normal View History

#!/usr/bin/env python
"""
Unit Name: dupeguru.engine
Created By: Virgil Dupras
Created On: 2006/01/29
Last modified by:$Author: virgil $
Last modified on:$Date: $
$Revision: $
Copyright 2007 Hardcoded Software (http://www.hardcoded.net)
"""
from __future__ import division
import difflib
import logging
import string
from collections import defaultdict, namedtuple
from unicodedata import normalize
from hsutil.str import multi_replace
from hsutil import job
(WEIGHT_WORDS,
MATCH_SIMILAR_WORDS,
NO_FIELD_ORDER) = range(3)
JOB_REFRESH_RATE = 100
def getwords(s):
if isinstance(s, unicode):
s = normalize('NFD', s)
s = multi_replace(s, "-_&+():;\\[]{}.,<>/?~!@#$*", ' ').lower()
s = ''.join(c for c in s if c in string.ascii_letters + string.digits + string.whitespace)
return filter(None, s.split(' ')) # filter() is to remove empty elements
def getfields(s):
fields = [getwords(field) for field in s.split(' - ')]
return filter(None, fields)
def unpack_fields(fields):
result = []
for field in fields:
if isinstance(field, list):
result += field
else:
result.append(field)
return result
def compare(first, second, flags=()):
"""Returns the % of words that match between first and second
The result is a int in the range 0..100.
First and second can be either a string or a list.
"""
if not (first and second):
return 0
if any(isinstance(element, list) for element in first):
return compare_fields(first, second, flags)
second = second[:] #We must use a copy of second because we remove items from it
match_similar = MATCH_SIMILAR_WORDS in flags
weight_words = WEIGHT_WORDS in flags
joined = first + second
total_count = (sum(len(word) for word in joined) if weight_words else len(joined))
match_count = 0
in_order = True
for word in first:
if match_similar and (word not in second):
similar = difflib.get_close_matches(word, second, 1, 0.8)
if similar:
word = similar[0]
if word in second:
if second[0] != word:
in_order = False
second.remove(word)
match_count += (len(word) if weight_words else 1)
result = round(((match_count * 2) / total_count) * 100)
if (result == 100) and (not in_order):
result = 99 # We cannot consider a match exact unless the ordering is the same
return result
def compare_fields(first, second, flags=()):
"""Returns the score for the lowest matching fields.
first and second must be lists of lists of string.
"""
if len(first) != len(second):
return 0
if NO_FIELD_ORDER in flags:
results = []
#We don't want to remove field directly in the list. We must work on a copy.
second = second[:]
for field1 in first:
max = 0
matched_field = None
for field2 in second:
r = compare(field1, field2, flags)
if r > max:
max = r
matched_field = field2
results.append(max)
if matched_field:
second.remove(matched_field)
else:
results = [compare(word1, word2, flags) for word1, word2 in zip(first, second)]
return min(results) if results else 0
def build_word_dict(objects, j=job.nulljob):
"""Returns a dict of objects mapped by their words.
objects must have a 'words' attribute being a list of strings or a list of lists of strings.
The result will be a dict with words as keys, lists of objects as values.
"""
result = defaultdict(set)
for object in j.iter_with_progress(objects, 'Prepared %d/%d files', JOB_REFRESH_RATE):
for word in unpack_fields(object.words):
result[word].add(object)
return result
def merge_similar_words(word_dict):
"""Take all keys in word_dict that are similar, and merge them together.
"""
keys = word_dict.keys()
keys.sort(key=len)# we want the shortest word to stay
while keys:
key = keys.pop(0)
similars = difflib.get_close_matches(key, keys, 100, 0.8)
if not similars:
continue
objects = word_dict[key]
for similar in similars:
objects |= word_dict[similar]
del word_dict[similar]
keys.remove(similar)
def reduce_common_words(word_dict, threshold):
"""Remove all objects from word_dict values where the object count >= threshold
The exception to this removal are the objects where all the words of the object are common.
Because if we remove them, we will miss some duplicates!
"""
uncommon_words = set(word for word, objects in word_dict.items() if len(objects) < threshold)
for word, objects in word_dict.items():
if len(objects) < threshold:
continue
reduced = set()
for o in objects:
if not any(w in uncommon_words for w in unpack_fields(o.words)):
reduced.add(o)
if reduced:
word_dict[word] = reduced
else:
del word_dict[word]
Match = namedtuple('Match', 'first second percentage')
def get_match(first, second, flags=()):
#it is assumed here that first and second both have a "words" attribute
percentage = compare(first.words, second.words, flags)
return Match(first, second, percentage)
class MatchFactory(object):
common_word_threshold = 50
match_similar_words = False
min_match_percentage = 0
weight_words = False
no_field_order = False
limit = 5000000
def getmatches(self, objects, j=job.nulljob):
j = j.start_subjob(2)
sj = j.start_subjob(2)
for o in objects:
if not hasattr(o, 'words'):
o.words = getwords(o.name)
word_dict = build_word_dict(objects, sj)
reduce_common_words(word_dict, self.common_word_threshold)
if self.match_similar_words:
merge_similar_words(word_dict)
match_flags = []
if self.weight_words:
match_flags.append(WEIGHT_WORDS)
if self.match_similar_words:
match_flags.append(MATCH_SIMILAR_WORDS)
if self.no_field_order:
match_flags.append(NO_FIELD_ORDER)
j.start_job(len(word_dict), '0 matches found')
compared = defaultdict(set)
result = []
try:
# This whole 'popping' thing is there to avoid taking too much memory at the same time.
while word_dict:
items = word_dict.popitem()[1]
while items:
ref = items.pop()
compared_already = compared[ref]
to_compare = items - compared_already
compared_already |= to_compare
for other in to_compare:
m = get_match(ref, other, match_flags)
if m.percentage >= self.min_match_percentage:
result.append(m)
if len(result) >= self.limit:
return result
j.add_progress(desc='%d matches found' % len(result))
except MemoryError:
# This is the place where the memory usage is at its peak during the scan.
# Just continue the process with an incomplete list of matches.
del compared # This should give us enough room to call logging.
logging.warning('Memory Overflow. Matches: %d. Word dict: %d' % (len(result), len(word_dict)))
return result
return result
class Group(object):
#---Override
def __init__(self):
self._clear()
def __contains__(self, item):
return item in self.unordered
def __getitem__(self, key):
return self.ordered.__getitem__(key)
def __iter__(self):
return iter(self.ordered)
def __len__(self):
return len(self.ordered)
#---Private
def _clear(self):
self._percentage = None
self._matches_for_ref = None
self.matches = set()
self.candidates = defaultdict(set)
self.ordered = []
self.unordered = set()
def _get_matches_for_ref(self):
if self._matches_for_ref is None:
ref = self.ref
self._matches_for_ref = [match for match in self.matches if ref in match]
return self._matches_for_ref
#---Public
def add_match(self, match):
def add_candidate(item, match):
matches = self.candidates[item]
matches.add(match)
if self.unordered <= matches:
self.ordered.append(item)
self.unordered.add(item)
if match in self.matches:
return
self.matches.add(match)
first, second, _ = match
if first not in self.unordered:
add_candidate(first, second)
if second not in self.unordered:
add_candidate(second, first)
self._percentage = None
self._matches_for_ref = None
def clean_matches(self):
self.matches = set(m for m in self.matches if (m.first in self.unordered) and (m.second in self.unordered))
self.candidates = defaultdict(set)
def get_match_of(self, item):
if item is self.ref:
return
for m in self._get_matches_for_ref():
if item in m:
return m
def prioritize(self, key_func, tie_breaker=None):
# tie_breaker(ref, dupe) --> True if dupe should be ref
self.ordered.sort(key=key_func)
if tie_breaker is None:
return
ref = self.ref
key_value = key_func(ref)
for dupe in self.dupes:
if key_func(dupe) != key_value:
break
if tie_breaker(ref, dupe):
ref = dupe
if ref is not self.ref:
self.switch_ref(ref)
def remove_dupe(self, item, clean_matches=True):
try:
self.ordered.remove(item)
self.unordered.remove(item)
self._percentage = None
self._matches_for_ref = None
if (len(self) > 1) and any(not getattr(item, 'is_ref', False) for item in self):
if clean_matches:
self.matches = set(m for m in self.matches if item not in m)
else:
self._clear()
except ValueError:
pass
def switch_ref(self, with_dupe):
try:
self.ordered.remove(with_dupe)
self.ordered.insert(0, with_dupe)
self._percentage = None
self._matches_for_ref = None
except ValueError:
pass
dupes = property(lambda self: self[1:])
@property
def percentage(self):
if self._percentage is None:
if self.dupes:
matches = self._get_matches_for_ref()
self._percentage = sum(match.percentage for match in matches) // len(matches)
else:
self._percentage = 0
return self._percentage
@property
def ref(self):
if self:
return self[0]
def get_groups(matches, j=job.nulljob):
matches.sort(key=lambda match: -match.percentage)
dupe2group = {}
groups = []
for match in j.iter_with_progress(matches, 'Grouped %d/%d matches', JOB_REFRESH_RATE):
first, second, _ = match
first_group = dupe2group.get(first)
second_group = dupe2group.get(second)
if first_group:
if second_group:
if first_group is second_group:
target_group = first_group
else:
continue
else:
target_group = first_group
dupe2group[second] = target_group
else:
if second_group:
target_group = second_group
dupe2group[first] = target_group
else:
target_group = Group()
groups.append(target_group)
dupe2group[first] = target_group
dupe2group[second] = target_group
target_group.add_match(match)
for group in groups:
group.clean_matches()
return groups